RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.Sc. FOURTH SEMESTER EXAMINATION, MAY 2015

SECOND YEAR

Date : 30/05/2015 Time : 10.30 am – 12.30 pm

PHYSICS (General) Paper: IV

Full Marks : 50

[4]

[3]

[3]

[4]

[4]

[Use a separate Answer Book for each group]

Group – A

[Answer <u>any two</u> questions]

- 1. a) Explain the action of p-n junction diode in forward and reverse bias.
 - b) Describe the operation of diodes in rectification within a bridge rectifier. Hence explain the importance of a capacitor as a filter. [4+2]
- 2. a) What are input and output characteristics of a transistor in Common Emitter Mode. [2]
 - b) Draw the necessary circuit for a p-n-p transistor in CE mode for characteristic curves. Define the three regions; active, saturation and cutoff in the output characteristic. Establish the relation between α and β of a transistor. [1+3+1]
 - c) In the given circuit the transistor has $\beta = 30$. Find the values of I_B, I_C and V_{CE}.

 $V_{\rm CC} = 15V$ **≹**300Ω 24KΩ 3 E 12

3. a) What is Zener diode? Explain how Zener diode maintains constant voltage across the load? [5]

- b) Compare the characteristic curves of Zener and ordinary diodes? What are the basic differences between these two diodes. [3+2]
- 4. a) State and explain De Morgan's theorem. Explain the action of half adder and full adder with diagram and truth table. [3+4]
 - b) Convert the decimal number 427 into binary.

<u>Group – B</u>

[Answer <u>any three</u> questions]

5. a) What is a photon? How does it differ from a particle? State the characteristics of photoelectric emission. Hence write down Einstein's equation for photoelectric emission. [2+3+1]

- b) The work function for lithium is 4.6×10^{-19} Joule. Calculate the lowest frequency of radiation for photoelectric emission from lithium. Find the maximum energy of photoelectron when the frequency of incident radiation is 7.3×10^{14} Hz.
- 6. a) Define atomic mass unit (amu). What do you mean by binding energy of nucleus? Explain its importance. [1+2+4]
 - b) Calculate the binding energy per nucleon of ¹⁶O nucleus. Given mass of proton and neutron are 1.008145 and 1.008986 respectively and mass of ¹⁶O is 16.279069. All values are in amu. [3]
- 7. a) What do you mean by Raman Scattering? State the characteristics of Raman scattering. What are Stoke's and anti-Stokes lines. [1+3+2]
 - b) Compare the basic differences between Raman and Compton effects.

8.	a)	xplain the concepts of lattice and crystal structure. What are Miller indices? How are they	
		determined? [2	+2+2]
	b)	Write down Bragg's equation for X-ray diffraction. Explain the different parameters in it.	[2]
	c)	In a crystal lattice $a = b = 2.5$ Å and $c = 1.8$ Å. Find the distance between adjacent planes with	
		Miller indices (1, 1, 1) and (2, 1, 3).	[2]
9.	a)	State the basic postulates of Einstein's special theory of relativity.	
		If the total energy of a particle is exactly twice its rest mass energy, calculate the speed of the	
		particle.	[2+3]
	b)	What do you mean by length contraction and time dilation in relativity? Write down the formula	
		in each case.	[5]
10	a)	What do you mean by wave-particle duality in basic quantum mechanics? Write down the equation of de-Broglie wave. Show that de-Broglie wave associated with an electron of energy V	
		electron Volt is nearly $\frac{12 \cdot 27}{57}$. [1]	+1+3]
		\sqrt{V}	
	b)	Deduce Schrodinger wave equation for free particle. Find the probability that a particle in a 1-D	
		box of length L can be found in the range $0.4L$ and $0.6L$, for ground State.	[3+2]

_____×_____